Preview

Surgery and Oncology

Advanced search

Morphological characteristics of mucinous adenocarcinoma of the colon and its embryogenetic premises

https://doi.org/10.17650/2220-3478-2019-9-2-16-22

Abstract

This review reveals the anatomical, physiological and embryogenetic features of the proximal colon to explain the reasons for such frequent localization of mucinous phenotype of adenocarcinoma (MAC) here. It was shown that later differentiation in embryogenesis causes relative insufficiency of the proximal part as a structure of the digestive and immune systems. Physiologically lower lymphoid tissue (GALT) density here leads to the formation of a certain composition of the intestinal microbiota, which is different from that in the distal part, which is a significant link in the etiopathogenesis of proximal colon cancer. It is confirmed also by different composition of biofilms on the surface of epithelial tumors in the right and left halves of the colon, as well as differences in the molecular mechanisms of carcinogenesis, depending on the location of the cancer. Common for proximal part genetic changes, called as CIMP-phenotype, microsatellite instability and BRAF proto-oncogene mutation lead to excessive secretion of specific mucin fractions (mainly MUC2 and MUC5AC), the imbalance of its composition and the formation of MAC. An earlier age of onset, frequent association with hereditary non-polypous colorectal carcinoma, the predominance of MUC2 and MUC5AC fractions, similar to the embryonic period, as well as a higher level of cancer-embryonic antigen in patients with MAC indicate the influence of anatomical, physiological and embryogenetic features of the proximal colon on carcinogenesis long before its formation. Thus, a detailed understanding of MAC carcinogenesis is necessary for an adequate assessment of its effective prevention in time, as well as dealing with it as with specific nosological unit requiring specific treatment principles.

About the Authors

Yu. S. Korneva
Smolensk State Medical University, Ministry of Health of Russia; Smolensk Regional Institute of Pathology
Russian Federation

Department of Pathological Anatomy SSMU; Department of Clinical Pathology No. 2 named after Prof. V.G. Molotkov SRIP.

28Krupskoy St., Smolensk 214019; 27 Prospekt Gagarina, Smolensk 214020



R. V. Ukrainets
Smolensk State Medical University, Ministry of Health of Russia
Russian Federation

Department of Pathological Anatomy.

28Krupskoy St., Smolensk 214019



References

1. Melis M., Hernandez J., Siegel E.M. et al. Gene expression profiling of colorectal mucinous adenocarcinomas. Dis Colon Rectum. 2010;53(6):936—43. DOI: 10.1007/DCR.0b013e3181d320c4.

2. Park J.S., Huh J.W., Park Y.A. et al. Prognostic comparison between mucinous and nonmucinous adenocarcinoma in colorectal cancer. Medicine (Baltimore) 2015;94(15):e658. DOI: 10.1097/MD.0000000000000658

3. Pai R.K., Jayachandran P., Koong A.C. et al. BRAF-mutated, microsatellite-stable adenocarcinoma of the proximal colon: an aggressive adenocarcinoma with poor survival, mucinous differentiation, and adverse morphologic features. Am J Surg Pathol 2012;36(5):744—52. DOI: 10.1097/PAS.0b013e31824430d.

4. Yoon Y.S., Kim J., Hong S.M. et al. Clinical implications of mucinous components correlated with microsatellite instability in patients with colorectal cancer. Colorectal Dis 2015;17(8):O161—7. DOI: 10.1111/codi.13027.

5. Wang M.J., Ping J., Li Y. et al. Prognostic significance and molecular features of colorectal mucinous adenocarcinomas: a strobe-compliant study. Medicine (Baltimore) 2015;94(51):e2350. DOI: 10.1097/MD.0000000000002350.

6. Maeda Y., Sadahiro S., Suzuki T. et al. Significance of the mucinous component in the histopathological classification of colon cancer. Surg Today 2016;46(3):303—8. DOI: 10.1007/s00595-015-1150-2.

7. Verhulst J., Ferdinande L., Demetter P., Ceelen W. Mucinous subtype as prognostic factor in colorectal cancer: a systematic review and meta-analysis. J Clin Pathol 2012;65(5):381 —8. DOI: 10.1136/jclin-path-2011-200340.

8. Leopoldo S., Lorena B., Cinzia A. et al. Two subtypes of mucinous adenocarcinoma of the colorectum: clinicopathological and genetic features. Ann Surg Oncol 2008;15(5):1429—39. DOI: 10.1245/s10434-007-9757-1.

9. Papadopoulos V.N., Michalopoulos A., Netta S. et al. Prognostic significance of mucinous component in colorectal carcinoma. Tech Coloproctol 2004;8(suppl 1): s123—5.

10. Adell R., Marcote E., Segarra M.A. et al. Is mucinous colorectal adenocarcinoma a distinct entity? Gastroenterol Hepatol 2002;25(9):534—40.

11. Lin J.K., Shen M.Y., Lin T.C. et al. Distribution of a single nucleotide polymorphism of insulin-like growth factor-1 in colorectal cancer patients and its association with mucinous adenocarcinoma. Int J Biol Markers 2010;25(4):195—9.

12. Arfaoui Toumi A., Kriaa Ben Mahmoud L., Khiari M. et al. Epidemiological study, pathologic evaluation and prognostic factors of colorectal mucinous vs non-mucinous adenocarcinoma (a series of 196 patients). Tunis Med 2010;88(1):12—7.

13. Byrd J.C., Bresalier R.S. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 2004;23(1—2): 77-99.

14. Ionila M., Margaritescu C., Pirici D., Mogoanta S.S. Mucinous adenocarcinoma of the colon — a histochemical study. Rom J Morphol Embryol 2011;52(3): 783—90.

15. Park E.T., Oh H.K., Gum J.R.Jr. et al. HATH1 expression in mucinous cancers of the colorectum and related lesions. Clin Cancer Res 2006;12(18):5403—10.

16. Du W., Mah J.T., Lee J. et al. Incidence and survival of mucinous adenocarcinoma of the colorectum: a population-based study from an Asian country. Dis Colon Rectum 2004;47(1):78—85.

17. Buisine M.P., Devisme L., Savidge T.C. et al. Mucin gene expression in human embryonic and fetal intestine. Gut 1998;43(4):519—24.

18. Reid C.J., Harris A. Developmental expression of mucin genes in the human gastrointestinal system. Gut 1998;42(2):220 —6.

19. Kazama Y., Watanabe T., Kanazawa T. et al. Mucinous carcinomas of the colon and rectum show higher rates of microsatellite instability and lower rates of chromosomal instability: a study matched for T classification and tumor location. Cancer 2005;103(10):2023—9.

20. Kakar S., Aksoy S., Burgart L.J., Smyrk T.C. Mucinous carcinoma of the colon: correlation of loss of mismatch repair enzymes with clinicopathologic features and survival. Mod Pathol 2004;17(6):696—700.

21. Barresi V., Reggiani Bonetti L., Ieni A. et al. Prognostic significance of grading based on the counting of poorly differentiated clusters in colorectal mucinous adenocarcinoma. Hum Pathol 2015;46(11):1722—9. DOI: 10.1016/j.humpath.2015.07.013.

22. Lee M.S., Menter D.G., Kopetz S. Right versus left colon cancer biology: integrating the consensus molecular subtypes. J Natl Compr Canc Netw 2017;15(3):411—9.

23. Perez-Villamil B., Romera-Lopez A., Hernandez-Prieto S. et al. Colon cancer molecular subtypes identified by expression profiling and associated to stroma, mucinous type and different clinical behavior. BMC Cancer 2012;12:260. DOI: 10.1186/1471-2407-12-260.

24. Eyking A., Reis H., Frank M. et al. MiR-205 and MiR-373 Are Associated with Aggressive Human Mucinous Colorectal Cancer. PLoS One 2016;11(6):e0156871. DOI: 10.1371/jour-nal.pone.0156871.

25. Kazama Y., Watanabe T., Kanazawa T. et al. Mucinous carcinomas of the colon and rectum show higher rates of microsatellite instability and lower rates of chromosomal instability: a study matched for T classification and tumor location. Cancer 2005;103(10):2023—9.

26. Kim K., Castro E.J.T., Shim H. et al. Differences Regarding the Molecular Features and Gut Microbiota Between Right and Left Colon Cancer. Ann Coloproctol 2018;34(6):280—5. DOI: 10.3393/ac.2018.12.17.

27. Volkova O.V., Pe-karskiy M.I. Embryogenesis and developmental histology of human internal organs. Moscow: Meditsina, 1976. 414 p. (In Russ.).

28. Morozova E.N., Morozov V.N., Kuzmachuk D.O., Morgun Yu.A. A view on morphogenesis of Peyer’s patches in the small intestine of rats. Vestnik problem biologii i meditsiny = Bulletin of Problems in Biology and Medicine 2013;2(2):101. (In Russ.).

29. Karpocheva I.G., Galeeva E.N. Anatomical and functional characteristics of the lymphoid system and its development in prenatal ontogenesis. Sovremennye problemy nauki i obrazovaniya = Current Problems in Science and Education 2017;2:86. (In Russ.).

30. Peaudecerf L., Rocha B. Role of the gut as a primary lymphoid organ. Immunol Lett 2011;140(1-2):1—6. DOI: 10.1016/j.im-let.2011.05.009.

31. Gordon J.I., Hooper L.V., McNevin M.S. et al. Epithelial cell growth and differentiation. III. Promoting diversity in the intestine: conversations between the microflora, epithelium, and diffuse GALT. Am J Physiol 1997;273(3 Pt 1):G565—70.

32. Neumann P.A., Koch S., Hilgarth R.S. et al. Gut commensal bacteria and regional Wnt gene expression in the proximal versus distal colon. Am J Pathol 2014;184(3):592—9. DOI: 10.1016/j.ajpath.2013.11.029.

33. Guseynov T.S., Guseynova S.T. Debatable issues in the anatomy of Peyer’s patches of the small intestine. Saratovskiy nauchno-meditsinskiy zhumal = Saratov Journal of Medical Research 2012;8(3):687—91. (In Russ.).

34. Merlano M.C., Granetto C., Fea E. et al. Heterogeneity of colon cancer: from bench to bedside. ESMO Open 2017;2(3):e000218. DOI: 10.1136/esmoopen-2017-000218.

35. Kashtanova D.A., Popenko A.S., Tkacheva O.N. et al. Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition 2016;32(6): 620-7. DOI: 10.1016/j.nut.2015.12.037.

36. Kosumi K., Hamada T., Koh H. et al. The Amount of Bifidobacterium Genus in Colorectal Carcinoma Tissue in Relation to Tumor Characteristics and Clinical Outcome. Am J Pathol 2018;188(12): 2839-52. DOI: 10.1016/j.aj-path.2018.08.015.

37. Wu M., Wu Y., Li J. et al. The dynamic changes of gut microbiota in Muc2 deficient mice. Int J Mol Sci 2018;19(9). PII: E2809. DOI: 10.3390/ijms19092809.

38. Kamphuis J.B.J., Mercier-Bonin M., Eutamene H., Theodorou V. Mucus organisation is shaped by colonic content; a new view. Sci Rep 2017;7(1):8527. DOI: 10.1038/s41598-017-08938-3.

39. Koliarakis I., Psaroulaki A., Nikolouzakis T.K. et al. Intestinal microbiota and colorectal cancer: a new aspect of research. CJ BUON 2018;23(5):1216—34.

40. Hattori N., Niwa T., Ishida T. et al. Antibiotics suppress colon tumorigenesis through inhibition of aberrant DNA methylation in an azoxymethane and dextran sulfate sodium colitis model. Cancer Sci 2019;110(1): 147—56. DOI: 10.1111/cas.13880.

41. Mima K., Nishihara R., Qian Z.R. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016;65(12):1973—80. DOI: 10.1136/gutjnl-2015-310101.

42. Mima K., Sukawa Y., Nishihara R. et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol 2015;1(5):653—61. DOI: 10.1001/jamaon-col.2015.1377.

43. Gao Z., Guo B., Gao R. et al. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol 2015;6:20. DOI: 10.3389/fmicb.2015.00020.

44. Flemer B., Lynch D.B., Brown J.M. et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 2017;66(4):633—43. DOI: 10.1136/gutjnl-2015-309595.


Review

Views: 3581


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5857 (Online)