Preview

Surgery and Oncology

Advanced search

PROGNOSTIC BIOMARKERS OF GASTROINTESTINAL NEOPLASIA

https://doi.org/10.17650/2220-3478-2017-7-4-20-30

Abstract

In the era of personalized treatment, oncologists are striving to tailor medical treatment to the characteristics of the individual patient, emphasizing the importance of a continuous search for accurate biomarkers. Prognostic biomarkers reflect the intricate underlying biology that enables cancer to progress. Intratumoral heterogeneity includes genetic, epigenetic and functional heterogeneity. Genetic intratumoral heterogeneity is a consequence of clonal evolution and a cause of disease progression. During the oncogenesis process, genetic aberrations accumulate continuously, result of this process is that tumors are genetically heterogeneous, with a plurality of coexisting clones that vary over time. Herewith specific mutations are associated with particular stages of tumor development, correlates with specific histopathological disease stages. Many patients with colorectal cancer have disease recurrence after resection of the tumor despite adjuvant therapy, while some patients don’t have a relapse despite the absence of treatment. Identifying reliable predictors of outcome after resection is a universal problem. So the reassessment of the current criteria and better prognostic and predictive biomarkers for the selection of patients who might benefit from adjuvant chemotherapy are urgently needed. A prognostic biomarker reflects the natural history of the tumor and provides information on the likely outcome and prognosis, independent of a specific treatment. Predictive biomarkers indicate the sensitivity or resistance of the tumor to a given treatment. Some markers can be both prognostic and predictive. Gene mutations and epigenetic aberrations that modify the intracellular signaling pathways may be important factors in oncogenesis. In this context, oncogenes, genes – tumor suppressors and small non-coding RNA have attracted attention as potential biomarkers and regulators of oncogenesis and evaluate in clinical trials.

About the Authors

S. G. Scherbak
City Hospital No. 40 of Kurortny District; Saint Petersburg State University
Russian Federation

Department Postgraduate Medical Education of the Medical Faculty SPSU.

9 Borisova St., Sestroretsk, Saint Petersburg 197706; 7–9 Universitetskaya naberezhnaya, Saint Petersburg 199034



D. A. Vologzhanin
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

Department Military Therapy.

6 Akademika Lebedeva St., Saint Petersburg 194044



D. V. Gladyshev
City Hospital No. 40 of Kurortny District; Saint Petersburg State University
Russian Federation

Department Postgraduate Medical Education of the Medical Faculty SPSU.

9 Borisova St., Sestroretsk, Saint Petersburg 197706; 7–9 Universitetskaya naberezhnaya, Saint Petersburg 199034


O. S. Glotov
City Hospital No. 40 of Kurortny District
Russian Federation

9 Borisova St., Sestroretsk, Saint Petersburg 197706



A. S. Golota
City Hospital No. 40 of Kurortny District
Russian Federation

9 Borisova St., Sestroretsk, Saint Petersburg 197706



Т. A. Kamilova
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

Department Military Therapy.

6 Akademika Lebedeva St., Saint Petersburg 194044



D. V. Lantukhov
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

Department Military Therapy.

6 Akademika Lebedeva St., Saint Petersburg 194044



S. A. Kovalenko
City Hospital No. 40 of Kurortny District
Russian Federation

9 Borisova St., Sestroretsk, Saint Petersburg 197706



D. G. Lisovets
City Hospital No. 40 of Kurortny District
Russian Federation

9 Borisova St., Sestroretsk, Saint Petersburg 197706



А. M. Sarana
City Hospital No. 40 of Kurortny District; Saint Petersburg State University
Russian Federation

Department Postgraduate Medical Education of the Medical Faculty SPSU.

9 Borisova St., Sestroretsk, Saint Petersburg 197706; 7–9 Universitetskaya naberezhnaya, Saint Petersburg 199034



References

1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66(1):7–30. DOI: 10.3322/caac.21332.

2. Cuyle P.J., Prenen H. Current and future biomarkers in the treatment of colorectal cancer. Acta Clin Belg 2017;72(2):103–15. DOI: 10.1080/17843286.2016.1262996.

3. Tu C., Mojica W., Straubingeret R.M. et al. Quantitative proteomic profiling of paired cancerous and normal colon epithelial cells isolated freshly from colorectal cancer patients. Proteomics Clin Appl 2017;11(5–6). DOI: 10.1002/prca.201600155.

4. Yu J., Feng Q., Wong S.H. et al. Metagenomic analysis of faecal microbiomeas a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017;66(1):70–8. DOI: 10.1136/gutjnl-2015-309800.

5. Mohammadi A., Mansoori B., Baradaran B. The role of microRNA in colorectal. Biomed Pharmacother 2016;84(4):705–13. DOI: 10.1016/j.biopha.2016.09.099.

6. Van Kessel A.G., Venkatachalam R., Kuiper R.P. et al. Colorectal cancer. Genomic and personalized medicine (2nd edn.) 2013;69(5):722–32.

7. Punt C.J., Koopman M., Vermeulen L. From tumor heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol 2017;14(4):235–46. DOI: 10.1038/nrclinonc.2016.171.

8. Bigagli E., de Filippo C., Castagnini C. et al. DNA copy number alterations, gene expression changes and disease-free survival in patients with colorectal cancer: a 10 years’ follow-up. Cell Oncol 2016;39(6):545–58. DOI: 10.1007/s13402-016-0299-z.

9. Tariq K., Ghias K. Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med 2016;13(1):120–35. DOI: 10.28092/j.issn.2095-3941.2015.0103.

10. Müller M.F., Ibrahim A.E., Arends M.J. Molecular pathological classification of colorectal cancer. Virchows Arch 2016;469(2):125–34. DOI: 10.1007/s00428-016-1956-3.

11. Kudryavtseva A.V., Lipatova A.V., Zaretsky A.R. et al. Important molecular genetic markers of colorectal cancer. Oncotarget 2016;7(33):53959–83. DOI: 10.18632/oncotarget.9796.

12. Kozak M.M., von Eyben R., Pai J. et al. Smad inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer. J Clin Pathol 2015;68(5):341–5. DOI: 10.1136/jclinpath-2014-202660.

13. Van Cutsem E., Lenz H.J., Kohne C.H. Fluorouracil, leucovorin and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol 2015;33(7):692–700. DOI: 10.1200/JCO.2014.59.4812.

14. Allegra C.J., Rumble R.B., Schilsky R.L. Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J Сlin Oncol Pract 2016;34(2):179–85. DOI: 10.1200/JCO.2015.63.9674.

15. Bokemeyer C., Köhne C.H., Ciardiello F. et al. FOLFOX4 plus cetuximab treatment and RAS mutations in colorectal cancer. Eur J Cancer 2015;51(10):1243–52. DOI: 10.1016/j.ejca.2015.04.007.

16. Van Cutsem E., Cervantes A., Adam R. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016;27(9):1386–422. DOI: 10.1093/annonc/mdw235.

17. Barras D., Missiaglia E., Wirapati P. et al. BRAF V600E-mutant colorectal cancer subtypes based on gene expression. Clin Cancer Res 2017;23(1):104–15. DOI: 10.1158/1078-0432.CCR-16-0140.

18. Mikhailenko D.S., Efremov G.D., Safronova N.Y. Detection of rare mutations by routine analysis of KRAS, NRAS and BRAF oncogenes. Bull Exp Biol Med 2017;162(3):375–8. DOI: 10.1007/s10517-017-3619-z.

19. Zhu L., Dong C., Cao Y. et al. Prognostic role of BRAF mutation in stage II/III colorectal cancer receiving curative resection and adjuvant chemotherapy: a metaanalysis based on randomized clinical trials. PLoS One 2016;11(5):154–9. DOI: 10.1371/journal.pone.0154795.

20. Moretto R., Cremolini C., Rossini D. Location of primary tumor and benefit from anti-epidermal growth factor receptor monoclonal antibodies in patients with RAS and BRAF wild-type metastatic colorectal cancer. Oncologist 2016;21(8):988–94. DOI: 10.1634/theoncologist.2016-0084.

21. Corcoran R.B., Atreya C.E., Falchook G.S. et al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600 mutant colorectal cancer. J Clin Oncol 2015;33(34):4023–31. DOI: 10.1200/JCO.2015.63.2471.

22. Lech G., Slotwinski R., Slodkowski M. et al. Colorectal cancer tumor markers and biomarkers: recent therapeutic advances. World J Gastroenterol 2016;22(5):1745–55. DOI: 10.3748/wjg.v22.i5.1745.

23. Shen Y., Han X., Wang J. et al. Prognostic impact of mutation profiling in patients with stage II and III colon cancer. Sci Rep 2016;6(2):243–50. DOI: 10.1038/srep24310.

24. Stintzing S., Stremitzer S., Sebio A. et al. Predictive and prognostic markers in the treatment of metastatic colorectal cancer (mКРР). Hematol Oncol Clin North Am 2015;29(1):43–60.

25. Thorvaldsen T.E., Pedersen N.M., Wenzel E.M. et al. Differential roles of AXIN1 and AXIN2 in tankyrase inhibitorinduced formation of degradasomes and β-catenin degradation. PLoS One 2017;12(1):170–75. DOI: 10.1371/journal.pone.0170508.

26. Gustavsson B., Carlsson G., Machover D.A. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin Colorectal Cancer 2015;14(1):1–10. DOI: 10.1016/j.clcc.2014.11.002.

27. Dalerba P., Sahoo D., Paik S. CDX2 as a prognostic biomarker in stage II and stage III colon cancer. N Engl J Med 2016;374(3):211–22. DOI: 10.1056/NEJMoa1506597.

28. Kandioler D., Mittlböck M., Kappel S. et al. TP53 mutational status and prediction of benefit from adjuvant 5-fluorouracil in stage III colon cancer patients. EBioMedicine 2015;2(8):825–30. DOI: 10.1016/j.ebiom.2015.06.003

29. Kunicka T., Prochazka P., Krus I. et al. Molecular profile of 5-fluorouracil pathway genes in colorectal carcinoma. BMC Cancer 2016;16(1):795. DOI: 10.1186/s12885-016-2826-8.

30. Phelip J.M., Mineur L., de la Fouchardière C. et al. High resectability rate of initially unresectable colorectal liver metastases after UGT1A1-adapted highdose irinotecan combined with LV5FU2 and cetuximab: a multicenter phase ii study (ERBIFORT). Ann Surg Oncol 2016;23(7):2161–6. DOI: 10.1245/s10434-015-5072-4

31. Sartore-Bianchi A., Trusolino L., Martino C. et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 2016;17(6):738–46. DOI: 10.1016/S1470-2045(16)00150-9.

32. Schmoll H.J. Targeting HER2: precision oncology for colorectal cancer. Lancet Oncol 2016;17(6):685–6. DOI: 10.1016/S1470-2045(16)30039-0.

33. Graham D.M., Coyle V.M., Kennedy R.D., Wilson R.H. Molecular subtypes and personalized therapy in metastatic colorectal cancer. Curr Colorectal Cancer Rep 2016;12(6):141–50. DOI: 10.1007/s11888-016-0312-y.

34. Boissière-Michot F., Frugier H., Ho-PunCheung H. et al. Immunohistochemical staining for p16 and BRAF V600E is useful to distinguish between sporadic and hereditary (Lynch syndrome-related) microsatellite instable colorectal carcinomas. Virchows Arch 2016;469(2):135–44. DOI: 10.1007/s00428-016-1958-1.

35. Andre T., de Gramont A., Vernerey D. et al. Adjuvant fluorouracil, leucovorin and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol 2015;33(35):4176–87. DOI: 10.1200/JCO.2015.63.4238.

36. Tougeron D., Mouillet G., Trouilloud I. et al. Efficacy of adjuvant chemotherapy in colon cancer with microsatellite instability: a large multicenter AGEO study. J Nat Cancer Inst 2016;108(7):76–81. DOI: 10.1093/jnci/djv438.

37. Caritg O., Navarro A., Moreno I. et al. Identifying high-risk stage II colon cancer patients: a three-microRNA-based score as a prognostic biomarker. Clin Colorectal Cancer 2016;15(4):175–82. DOI: 10.1016/j.clcc.2016.04.008.

38. Okugawa Y., Grady W.M., Goel A. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology 2015;149(5):1204–25. DOI: 10.1053/j.gastro.2015.07.011.

39. Pelosof L., Yerram S., Armstrong T. et al. GPX3 promoter methylation predicts platinum sensitivity in colorectal cancer. Epigenetics 2017;12(7):540–50. DOI: 10.1080/15592294.2016.1265711.

40. Sazanov A.A., Kiselyova E.V., Zakharenko A.A. et al. Plasma and saliva miR-21 expression in colorectal cancer patients. J Appl Genet 2017;58(2):231–7. DOI: 10.1007/s13353-016-0379-9.

41. Kerimis D., Kontos C.K., Christodoulou S. et al. Elevated expression of miR-24-3p is a potentially adverse prognostic factor in colorectal adenocarcinoma. Clin Biochem 2017;50(6):285–92. DOI: 10.1016/j.clinbiochem.2016.

42. Kingham P.T., Nguyen H.C., Zheng J. et al. MicroRNA-203 predicts human survival after resection of colorectal liver metastasis. Oncotarget 2017;8(12): 18821–31. DOI: 10.18632/oncotarget.13816.

43. Okugawa Y., Toiyama Y., Toden S. et al. Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in colorectal cancer. Gut 2017;66(1):107–17. DOI: 10.1136/gutjnl-2015-309359.

44. Cruz-Correa M., Pérez-Mayoral J., Dutil J. et al. Hereditary cancer syndromes in Latino populations: genetic characterization and surveillance guidelines. Hered Cancer Clin Pract 2017;15(3):3. DOI: 10.1186/s13053-017-0063-z.

45. Nimptsch K., Aleksandrova K., Boeing H. et al. Association of CRP genetic variants with blood concentrations of C-reactive protein and colorectal cancer risk. Int J Cancer 2015;136(5):1181–92. DOI: 10.1002/ijc.29086.

46. Linnekamp J.F., Wang X., Medema J.P., Vermeulen L. Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes. Cancer Res 2015;75(2):245–9. DOI: 10.1158/0008- 5472.CAN-14-2240.


Review

Views: 573


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5857 (Online)