Колоректальный рак и инсулиноподобные факторы роста

А.А. Николаев, Е.С. Герштейн, Е.А. Короткова, В.В. Делекторская, Е.К. Дворова ФГБУ «РОНЦ им. Н.Н. Блохина» РАМН, Москва

Контакты: Елена Сергеевна Герштейн esgershtein@gmail.com

Иммуноферментными методами определено содержание инсулиноподобных факторов роста (ИФР) 1, 2 и ИФР-связывающих белков (ИФРСБ) 1 и 3 в сыворотке крови 74 первичных больных колоректальным раком (КРР) и 30 практически здоровых доноров. Продемонстрировано достоверное повышение уровня ИФР-1 и снижение уровня ИФРСБ-3 в сыворотке больных КРР по сравнению с контролем. Чувствительность ИФР-1 как потенциального диагностического маркера КРР при пороговом уровне 140 нг/мл составляет 80 %, специфичность — 75 %. Обнаружена достоверная отрицательная корреляция между возрастом обследованных и содержанием ИФР-1, однако у больных КРР она была значительно слабее, чем в контроле. Взаимосвязи с основными показателями распространенности КРР не выявлено.

Ключевые слова: ИФР-1, ИФР-2, ИФРСБ-1, ИФРСБ-3, рак толстой кишки

Colorectal cancer and inculin-like growth factors

A.A. Nikolayev, E.S. Gerstein, E.A. Korotkova, V.V. Delektorskaya, E.K. Dvorova N.N. Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow

Insulin-like growth factors (IGF) 1 and 2 and IGF binding proteins (IGFBP) 1 and 3 levels were measured by ELISA techniques in blood serum of 74 primary colorectal cancer (CRC) patients and 30 control practically healthy persons. Significant increase of IGF-1 level and decrease of IGFBP-3 level were demonstrated in patients' serum as compared to control group. Sensitivity of IGF-1 as a prospective diagnostic CRC marker comprised 80 % with 75 % specificity using 140 ng/ml as cut-off level. Significant negative association was found between both patients and donors' age and serum IGF-1 levels, but in CRC patients it was much weaker than in control group. No associations were found between serum IGF 1 and 2 levels and main criteria of colorectal cancer progression.

Key words: IGF-1, IGF-2, IGFBP-1, IGFBP-3, colorectal cancer

Введение

Разработка новых подходов к лечению колоректального рака (КРР) — одна из важнейших проблем онкологии, привлекающая пристальное внимание клиницистов. Однако, несмотря на успехи, достигнутые в клинической диагностике и совершенствовании хирургических и комплексных методов лечения, смертность от этого заболевания остается довольно высокой. Многие исследователи связывают дальнейший прогресс в повышении эффективности лечения КРР не только с рациональным использованием существующих методов лечения, но и с разработкой принципиально новых патогенетических методов терапии, основанных на современных достижениях в изучении биохимии и молекулярной биологии опухолей.

Сигнальная система инсулиноподобных факторов роста играет значительную роль в возникновении и прогрессии различных злокачественных опухолей [1]. Она включает инсулиноподобные факторы роста 1 и 2 типа (ИФР-1 и ИФР-2) — митогенные пептиды, высокогомологичные друг другу и инсулину, синтезирующиеся в печени и некоторых других тканях под влиянием гормона роста гипофиза и воздействующие на периферические ткани, распространяясь по организму с кровью (центральный или эндокринный механизм

действия), их трансмембранные клеточные рецепторы и связывающие белки крови (ИФРСБ). ИФР-1 и ИФР-2 синтезируются также клетками различных опухолей и являются ауто/паракринными медиаторами, опосредующими рост, метастазирование и антиапоптотические ответы злокачественных клеток. ИФР, рецепторы ИФР и ИФРСБ образуют сложно регулируемую сеть взаимодействий как между собой, так и с другими биологическими регуляторами роста и выживаемости клеток. В настоящее время известно шесть ИФРСБ, а также семейство гомологичных связывающих белков, которые обладают значительно меньшим сродством к ИФР-лигандам. ИФРСБ модулируют биологическую доступность и активность ИФР несколькими способами: они осуществляют перенос ИФР из периферической крови к тканям-мишеням (ИФРСБ-1, 2 и 4), поддерживают резервный уровень ИФР в крови (это преимущественно функция ИФРСБ-3), потенцируют или ингибируют эффекты ИФР, а также опосредуют некоторые ИФР-независимые биологические эффекты. Расщепление ИФРСБ специфическими протеазами модулирует уровни свободных ИФР и ИФРСБ, а значит, и эффекты ИФР в тканях.

Результаты экспериментальных и предварительных клинических исследований свидетельствуют

о том, что в клетках КРР присутствуют все компоненты, необходимые для реализации аутокринного механизма действия ИФР-1 и ИФР-2 [2–8]. Показано, что белки семейства ИФР стимулируют не только пролиферативную, но и инвазивную и ангиогенную активность клеток, а ИФРСБ, напротив, оказывают подавляющее действие на эти процессы [9]. Уровни и соотношение различных компонентов системы ИФР в периферической крови неразрывно связаны с факторами питания, которые, в свою очередь, играют ключевую роль в этиологии КРР [10–12]. Так, высокий уровень ИФР-1 считается фактором повышенного риска развития этого заболевания [13, 14], роль других компонентов ИФР-сигнальной системы менее ясна.

Еще одной причиной для исследования роли ИФР-сигнальной системы при КРР является возможность использования специфических («таргетных») ингибиторов для подавления ее активности. Существует несколько подходов к решению этого вопроса: снижение уровня и/или биологической активности циркулирующих факторов роста, блокирование функции рецепторов и активация АМР-киназы, блокирующей нижележащие эффекты рецепторов ИФР [15]. В экспериментальных исследованиях уже продемонстрирована возможность торможения роста КРР с помощью моноклональных антител к ИФР-рецепторам [16] и низкомолекулярных ингибиторов их активности [17–19]. Предпринимаются также попытки использовать в качестве терапевтических агентов, ингибирующих активность ИФР-сигнальной системы, рекомбинантные ИФРСБ [20, 21].

Цель исследования — сравнительная оценка содержания ИФР-1 и ИФР-2, ИФРСБ-1 и ИФРСБ-3 в сыворотке крови больных КРР и практически здоровых людей, а также анализ взаимосвязи изученных показателей с основными клинико-морфологическими особенностями заболевания.

Материалы и методы

Обследовано 74 больных с впервые выявленным KPP (39 мужчин и 35 женщин) в возрасте от 20 до 85 лет (медиана — 62 года), проходивших обследование и лечение в Φ ГБУ «РОНЦ им. Н.Н. Блохина» РАМН

в период с 2011 по 2012 г. Рак прямой кишки был диагностирован у 45 больных, рак ободочной кишки — у 12, рак анального канала — у 9. У 18 больных была I, у 24 больных — II, у 20 — III и у 12 — IV стадия заболевания. Все больные с I—III стадиями были оперированы в радикальном объеме. Больным с IV стадией были выполнены преимущественно циторедуктивные операции. В группу контроля вошли 30 практически здоровых людей (17 мужчин и 13 женщин) в возрасте от 29 до 84 лет (медиана — 61 год).

Концентрацию ИФР-1, ИФР-2, ИФРСБ-1 и ИФРСБ-3 в сыворотке крови, полученной по стандартной методике до начала специфического лечения, определяли с помощью наборов реактивов для прямого иммуноферментного анализа производства компании Mediagnost (Германия) в соответствии с инструкциями производителя. Измерения проводили на автоматическом универсальном ридере для микропланшет ELx800 (Віо-Тек Instruments Inc., США). Содержание всех исследованных белков в сыворотке крови выражали в нг/мл.

Данные обрабатывали с помощью программы Statistica 7.0. В связи с тем, что распределение большинства исследованных показателей отличалось от нормального, при сравнении показателей и анализе их взаимосвязей использовали непараметрические методы: критерии Манна—Уитни и Краскела—Уоллиса, тест корреляции рангов Спирмена (R). Различия и корреляции считали достоверными при p < 0.05.

Результаты

В табл. 1 представлены статистические показатели концентрации исследованных маркеров в сыворотке крови общей группы больных КРР и группы контроля.

Обнаружено высоко достоверное увеличение медианного уровня ИФР-1 и снижение уровня ИФРСБ-3 у больных КРР по сравнению с контролем. Однако только у 35 (47 %) из 74 больных КРР уровни ИФР-1 превышали верхний 95 % доверительный интервал (ДИ) контроля, равный 181 нг/мл (p=0,002), т. е. чувствительность этого теста при данном пороговом значении была невысокой. Однако если снизить специфичность до 75 % (пороговый уровень — 140 нг/мл), то диагностическая чув-

Таблица 1. Содержание ИФР-1, ИФР-2, ИФРСБ-1 и ИФРСБ-3 в сыворотке крови больных КРР и контрольной группы

Группы	Медиана, квартили, нг/мл					
	ИФР-1	ИФР-2	ИФРСБ-1	ИФРСБ-3		
KPP	167 136–227	830 665–958	2,7 1,4–4,3	2341 2035–3245		
Контроль	127 108–150	720 550–930	2,4 0,8–6,6	3670 3010–4860		
5—95 % контроля	84,2-180	490-1205	0-12,5	256-11384		
p	0,00004	0,1	0,6	0,000009		

Онкологическая КОЛОПРОКТОЛОГИЯ 2'2013

ствительность ИФР-1 в общей группе повышается до $80\,\%$.

Как в группе контроля, так и у больных КРР обнаружена достоверная отрицательная корреляция между возрастом обследованных и содержанием ИФР-1, однако связь с возрастом у больных КРР была значительно слабее, чем в контроле (R = -0.29; p = 0.014 и R = -0.76; p = 0.0001 соответственно).

В контрольной группе выявлена также прямая зависимость между уровнями ИФР-2 и ИФРСБ-3 ($R=0.82;\ p=0.0001$) и обратная — между уровнями ИФР-1 и ИФРСБ-1 ($R=-0.4;\ p=0.03$) в сыворотке крови, которые отсутствовали в группе больных КРР. Таким образом, можно предположить, что у больных КРР нарушен баланс между ИФР и связывающими их белками крови, что свидетельствует об изменении биодоступности данных факторов роста.

В табл. 2 представлено содержание исследованных маркеров в контрольной группе и у больных KPP в зависимости от пола.

В группе контроля уровни ИФР-2, ИФРСБ-1

Таблица 2. Содержание ИФР-1, ИФР-2, ИФРСБ-1 и ИФРСБ-3 в сыворотке крови практически здоровых людей и больных КРР в зависимости от пола

	Медиана, квартили, нг/мл						
Группы	ИФР-1	ИФР-2	ИФРСБ-1	ИФРСБ-3			
	Контроль						
Мужчины	128	675	1,4	3150			
(<i>n</i> = 39)	108–150	525–785	0,3–2,5	2965–3550			
Женщины	125	930	4,6	4860			
(<i>n</i> = 35)	109–150	670–1140	2,3–9,1	4180–5630			
	Больные КРР						
Мужчины	179	815	2,1	2166			
(<i>n</i> = 39)	140–228	697–927	1,4–4,2	1957–2716			
Женщины	161	829	3,2	2958			
(<i>n</i> = 35)	131–230	697–978	1,3–5,4	2212–3703			

и ИФРСБ-3 были достоверно выше в сыворотке крови женщин по сравнению с мужчинами (во всех случаях p < 0,01). У больных КРР аналогичные достоверные различия отмечены только для ИФРСБ-3 (p = 0,003). При этом, если в общей группе пациентов уровни ИФР-2 не отличались от контроля, то у пациентов мужского пола этот показатель достоверно превышал показатели мужчин контрольной группы (p = 0,007). Различия, выявленные для ИФР-1 и ИФРСБ-3 при анализе общей группы пациентов, сохранялись как у мужчин, так и у женщин. В целом нарушения в балансе сывороточных ИФР/ИФРСБ при КРР более выражены у мужчин, чем у женщин.

При анализе взаимосвязи содержания ИФР и ИФРСБ в сыворотке крови с основными показателями распространенности рака толстой кишки, а также с гистологическим строением, степенью дифференцировки (аденокарцином) и локализацией опухоли

Таблица 3. Содержание ИФР-1, ИФР-2, ИФРСБ-1 и ИФРСБ-3 в сыворотке крови больных КРР с учетом основных клинико-морфологических факторов

логических факторов									
Группы	Медиана, пределы колебания, нг/мл								
	ИФР-1	ИФР-2	ИФРСБ-1	ИФРСБ-3					
Стадия									
I(n = 18)	182	701	3,4	2535					
	69–282	534—3121	0,2–6,5	3,3–5704					
II $(n = 24)$	163	799	2,1	2216					
	64,3–637	478–2044	0,8–11,3	1887–3910					
III $(n = 20)$	208	829	3,0	2320					
	66,5–541	459–1676	0,7–10,7	1748–9097					
IV $(n = 12)$	152	954	4,6	2777					
	71,4–408	463–2946	0,6–47,2	1502–24700					
		Критерий Т							
T1 $(n = 7)$	211	793	4,2	3800					
	146–282	664–959	0,2–6,5	3,3-5403					
T2 $(n = 14)$	149	694	2,2	2094					
	69–249	459–3121	0,7–6,5	1678–5703					
T3 $(n = 36)$	167	837	2,7	2314					
	64,3–637	459–2946	0,6–18,9	1806–24700					
T4 $(n = 17)$	176	824	3,1	2780					
	109–541	463–1027	0,7–47,2	1502–2193					
]	Критерий N							
N0 $(n = 46)$	172	781	2,0	2309					
	64,3–637	463–3122	0,2–11,3	3,3–9976					
N1 $(n = 22)$	179	841	3,4	2627					
	66,5–491	459–2946	0,6–47,2	1748–24700					
N2 (n = 6)	190	976	2,3	2409					
	113–541	773–1019	0,7–10,7	1832–2780					
]	Критерий М							
M0 ($n = 62$)	178	806	2,7	2308					
	64,3–637	459–3122	1,5–12,1	3,3–9096					
M1 ($n = 12$)	152	954	4,6	2777					
	71,4–408	463–2946	0,6–47,2	1501–24700					
	J	Іокализация							
Прямая киш-	164	778	2,1	2305					
ка $(n = 45)$	69-541	463–2946	0,6–10,7	550–24700					
Сигмовидная кишка ($n = 12$)	234	963	3,0	2334					
	132–637	459–3122	1,4–47,2	1748–4771					
Анальный отдел $(n = 9)$	181	842	3,2	2625					
	108–282	573–2228	0,2-5,4	3,3–4551					
Прочие $(n = 8)$	105	792	5,4	2708					
	64,3–230	477–987	0,8–18,9	1978–9976					
Гистологический вариант строения опухоли									
Аденокарци-	168	811	2,8	2340					
нома ($n = 65$)	64,3–637	459–3121	0,6–47,2	550-24700					
Плоскоклеточный рак $(n = 9)$	181	842	3,2	2624					
	108–282	573–2228	1,3–4,2	3,3–4551					
Степень дифференцировки аденокарцином									
Высокая (<i>n</i> = 14)	185	696	5,0	2684					
	86,4–491	565–1028	0,8–47,2	550-5403					
Умеренная (<i>n</i> = 35)	164	839	3,1	2482					
	71,4–637	459–3121	0,6–18,9	1806–24700					
Низкая (n = 16)	199	818	3,4	2042					
	64,3–317	477–1677	0,8–11,3	1748–3615					

статистически достоверных различий не выявлено (табл. 3). Можно отметить тенденцию к повышению уровня $И\Phi P$ -2 с увеличением стадии заболевания, а также с увеличением степени поражения лимфатических узлов (индекс N). В то же время уровни всех маркеров, кроме $И\Phi P$ -2, были наиболее высокими при индексе T1 — отсутствии инвазии в окружающие ткани. При сопоставлении с показателем отдаленного метастазирования (M) обнаружено недостоверное увеличение уровней всех исследованных маркеров в сыворотке крови больных KPP при наличии отдаленных метастазов.

Заключение

Таким образом, в сыворотке крови больных КРР достоверно повышено содержание ИФР-1 и снижено содержание ИФРСБ-3. Чувствительность ИФР-1 как потенциального диагностического маркера КРР составляет 80 % при 75 % специфичности (пороговый

vровень − 140 нг/мл). У пациентов мужского пола обнаружено также достоверное повышение уровня ИФР-2 в сыворотке крови по сравнению с контролем. Как в группе контроля, так и у больных КРР обнаружена достоверная отрицательная корреляция между возрастом обследованных и содержанием ИФР-1, однако связь с возрастом у больных КРР была значительно слабее, чем в контроле. Кроме того, у больных КРР отсутствовала корреляционная взаимосвязь между уровнями ИФР и ИФРСБ, отмеченная в контрольной группе, что свидетельствует о нарушении биодоступности ИФР. Кроме того, нами не обнаружено достоверной взаимосвязи уровней ИФР и ИФРСБ в сыворотке крови больных КРР с основными показателями распространенности процесса, а также с гистологическим строением и локализацией опухоли.

Исследование поддержано РФФИ, грант 12-03-00401.

ЛИТЕРАТУРА

- 1. Костылева О.И., Герштейн Е.С., Дигаева М.А. и др. Инсулиноподобные факторы роста, их рецепторы и связывающие белки как патогенетические факторы и потенциальные мишени терапии в онкологии. Вопросы биологической, медицинской и фармацевтической химии 2009;6:3—8.
- 2. Durai R., Yang W., Gupta S. et al. The role of the insulin-like growth factor system in colorectal cancer: review of current knowledge. Int J Colorectal Dis 2005;20(3):203–20.
- 3. Koda M., Reszec J., Sulkowska M. et al. Expression of the insulin-like growth factor-I receptor and proapoptotic Bax and Bak proteins in human colorectal cancer. Ann NY Acad Sci 2004;1030:377–83.
- 4. Fu P., Thompson J.A., Leeding K.S., Bach L.A. Insulin-like growth factors induce apoptosis as well as proliferation in LIM 1215 colon cancer cells. J Cell Biochem 2007;100(1):58–68.
- 5. Yavari K., Taghikhani M., Maragheh M.G. et al. Knockdown of IGF-IR by RNAi inhibits SW480 colon cancer cells growth in vitro. Arch Med Res 2009;40(4):235–40.
- 6. Davies M., Gupta S., Goldspink G., Winslet M. The insulin-like growth factor system and colorectal cancer: clinical and experimental evidence. Int J Colorectal Dis 2006;21(3):201–8.
- 7. Vrieling A., Voskuil D.W., Bosma A. et al. Expression of insulin-like growth factor system components in colorectal tissue and its relation with serum IGF levels. Growth Horm IGF Res 2009;19(2):126–35.

- 8. Sztefko K., Hodorowicz-Zaniewska D., Popiela T., Richter P. IGF-I, IGF-II, IGFBP2, IGFBP3 and acid-labile subunit (ALS) in colorectal cancer patients before surgery and during one year follow up in relation to age. Adv Med Sci 2009;54(1):51–8.
- 9. Bustin S.A., Dorudi S., Phillips S.M. et al. Local expression of insulin-like growth factor-I affects angiogenesis in colorectal cancer. Tumour Biol 2002;23(3):130–8.
 10. Giovannucci E. Insulin, insulin-like growth factors and colon cancer: a review of the evidence. J Nutr 2001;131(Suppl 11): 3109–20.
- 11. Jenab M., Riboli E., Cleveland R.J. et al. Serum C-peptide, IGFBP-1 and IGFBP-2 and risk of colon and rectal cancers in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 2007;121(2):368–76.
- 12. Park J.H. Inhibition of colon cancer cell growth by dietary components: role of the insulin-like growth factor (IGF) system. Asia Pac J Clin Nutr 2008;17(Suppl 1):257–60.
- 13. Nomura A.M., Stemmermann G.N., Lee J., Pollak M.N. Serum insulin-like growth factor I and subsequent risk of colorectal cancer among Japanese-American men. Am J Epidemiol 2003;158(5):424–31.
 14. Rinaldi S., Cleveland R., Norat T. et al. Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk: results from the EPIC cohort, plus a meta-analysis of prospective studies. Int J Cancer 2010;126(7):1702–15.
 15. Bruchim I., Werner H. Targeting IGF-1 signaling pathways in gynecologic

- malignancies. Expert Opin Ther Targets 2013;17(3):307–20.
- 16. Mitsiades C.S., Mitsiades N.S., McMullan C.J. et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 2004;5(3):221–30.
- 17. Perer E.S., Madan A.K., Shurin A. et al. Insulin-like growth factor I receptor antagonism augments response to chemoradiation therapy in colon cancer cells. J Surg Res 2000;94(1):1–5.

 18. Maloney E.K., McLaughlin J.L.,
- Dagdigian N.E. et al. An anti-insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation. Cancer Res 2003;63(16):5073–83.
- 19. Vanamala J., Reddivari L., Radhakrishnan S., Tarver C. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer 2010;10:238.
- 20. Leng S.L., Leeding K.S., Whitehead R.H., Bach L.A. Insulin-like growth factor (IGF)-binding protein-6 inhibits IGF-II-induced but not basal proliferation and adhesion of LIM 1215 colon cancer cells. Mol Cell Endocrinol 2001;174(1–2):121–7.
- 21. Alami N., Page V., Yu Q. et al. Recombinant human insulin-like growth factor-binding protein 3 inhibits tumor growth and targets the Akt pathway in lung and colon cancer models. Growth Horm IGF Res 2008;18(6):487–96.